
When Good Software Goes Bad
The Surprising Durability of an Ephemeral Technology

Nathan Ensmenger • Indiana University

Even before there was a word for software, there was a problem of software
maintenance. Maurice Wilkes, one of the first men ever to program a modern, stored-
program digital computer, loved to recall in later life the “exact instant” in June 1949
when he “realized that a good part of the remainder of my life was going to be spent in
finding errors in my own programs.”1 Technically the process Wilkes was describing
is called debugging (fixing unintentional mistakes in design and/or construction)
rather than maintenance (the repair or upkeep of an already functional system), but
such fine distinctions are irrelevant to the generations of software developers who

1Maurice V. Wilkes. Memoirs of a Computer Pioneer (History of Computing). 1985.

1

would inevitably recapitulate Wilke’s original epiphany: the delivery of working code
was only the beginning of the life-cycle of any significant software application. A
programmer could — and many did — spend the majority of their careers fixing,
repairing, and extending their own (or, even worse, other people’s) “legacy” systems.
In this respect, according to the well-worn witticism, programming a computer was
a little bit like sex: “One mistake and you have to support it for the rest of your life.”

The idea that software systems would require constant maintenance is perplexing,
almost paradoxical. After all, one of the defining features of software is its intangibility
and ephemerality. The digital nature of software code means that, to the degree that
it participates at all in material reality (for example, as a series of holes on a paper
tape or dots and dashes of magnetic iron on a disc), it is in a form that can be readily
disembodied and perfectly (and infinitely) replicated.

The virtuality of software (indeed, the terms have become almost synonymous)
means that, in theory, software systems do not break down, or wear out, or require
lubrication. Once a software-based system is working, it should work forever (or at
least until the underlying hardware platform it runs on fails, and that is somebody
else’s problem). Even if there are “bugs” that are subsequently revealed in the system,
these are considered flaws in the original design or implementation, not the result of
the wear-and-tear of daily use. In principle, such bugs could be completely eliminated
by rigorous development and testing methods. Occasionally a stray cosmic ray might
flip an unexpected bit in a software application, causing an error, but generally
speaking, software is a technology that should never be broken.

Except that software does get broken. All the time. And at great expense and
inconvenience to its owners and users. In most large software projects maintenance
represents the single most time consuming and expensive phase of development.
From the early 1960s to the present, software maintenance costs have represented
between 50% and 70% of all total expenditures on software development.2 In 1995
firms in the United States alone spent $70 billion on maintenance of more than
ten billion lines of legacy software code.3 The total maintenance costs associated

2B. P. Lientz, E. B. Swanson, and G. E. Tompkins. “Characteristics of application software
maintenance”. In: Commun. ACM 21.6 (1978), pp. 466–471; Girish Parikh. “Software maintenance:
penny wise, program foolish”. In: SIGSOFT Softw. Eng. Notes 10.5 (1985), pp. 89–98; Gerardo Canfora
and Aniello Cimitile. Software Maintenance. Tech. rep. University of Sannio, 2000; Ruchi Shukla and
Arun Kumar Misra. “Estimating software maintenance effort: a neural network approach”. In: ISEC
’08: Proceedings of the 1st conference on India software engineering conference. Hyderabad, India: ACM,
2008, pp. 107–112.

3J Sutherland. “Business objects in corporate information systems”. In: ACM Computing Surveys

2

with the Y2k Crisis has been estimated at more than $300 billion.4 Most computer
programmers begin their careers doing software maintenance, and many never do
anything but. And despite decades of effort, innovation, and investment in software
development methods and technologies, the problem never seems to get any better.

Figure 1: The Allocation of Software Effort

Errors, Enhancements, and Evolution

What, then, does maintenance mean in the context of software development? How
does one repair an unbreakable technology?

Obviously, much hinges on the notion of what it means to for software to truly
remain unbroken. Or, to flip the question around, on what it means for software to
“work.” This is a surprisingly difficult question to answer, and one which has plagued
software developers since the earliest days of electronic computing.

The most straightforward answer to this question is that software “works” when
it performs as expected, when the behavior of the system conforms to its original
design or specification. In other words, the software works when it is free from flaws
in its implementation, known colloquially as “bugs.” If these bugs are discovered
prior to the official “release” of the software (often an ambiguously defined moment
or milestone), then the work of fixing them is considered development; if they are
discovered afterwards, this same work is defined as maintenance. This is, of course,

(CSUR) (1995).
4Robert Mitchell. “Y2K: The good, the bad and the crazy”. In: Computerworld (2009).

3

a somewhat arbitrary distinction, but one with critical implications for the budget,
schedule, and perception of a project.5 Who does the work, who pays for it, who gets
the credit (or blame), whether or not the development phase is considered a success
or not — these are all affected by whether the work of debugging is categorized as
development or maintenance.

Evenmore difficult to determine is what exactly constitutes a bug, and who gets to
decide. Some bugs are obvious— the system crashes, or returns an obviously incorrect
result (1 + 2 = 4). But most bugs are much more difficult to identify. Some unexpected
behaviors are the result of the limitations of existing hardware, or of the limits of
computation, or the result of deliberate design compromises. To provide an extremely
simplified version of a very real issue that involves floating point computation, it
is entirely possible for a computer to return the result 10/3 * 3 = 9.9999 and still
be considered to be working (in the sense of being bug-free).6 But more common
were bugs that involved rare or edge cases that called into question basic questions
about what was the “correct” behavior of the system. The burden of finding such
bugs almost always devolved upon the end users. They were almost necessarily only
revealed after the software was integrated into its larger operational environment.

An additional complication is that although it is possible to determine during
the planning and development phase whether a given software design contains flaws,
it is impossible to demonstrate conclusively that it does not. Donald MacKenzie has
written extensively about the software verification movement, which attempted to
establish, either mathematically or using empirical testing regime, to “prove” that
software was reliable.7 The short version of his research is that this movement was a
failure. All software has bugs; the question is simply whether of not they are known,
and the degree to which they affect the general consensus on whether or not the
software is “working.”

In any case, although fixing bugs might seem the most obvious and significant
form of software maintenance, in reality only a small percentage of maintenance
efforts are devoted to fixing errors in implementation.8 One exhaustive study from
the early 1980s estimates such emergency repairs to occupy at most one-fifth of all

5Girish Parikh. “Exploring the world of software maintenance: what is software maintenance?” In:
SIGSOFT Softw. Eng. Notes 11.2 (1986), pp. 49–52.

6Donald MacKenzie. “Negotiating Arithmetic, Constructing Proof: The Sociology of Mathematics
and Information Technology”. In: SSS Social Studies of Science (1993).

7Donald MacKenzie. Mechanizing Proof. MIT Press, 2004.
8David C. Rine. “A short overview of a history of software maintenance: as it pertains to reuse”. In:

SIGSOFT Softw. Eng. Notes 16.4 (1991), pp. 60–63.

4

software maintenance workers.

Figure 2: The Eternal Cycle of Software Maintenance

But if the real work of maintenance is not finding and correcting bugs, then what
is it all about?

The majority of software maintenance involve what are vaguely referred to in
the literature as “enhancements.” These enhancements sometimes involved strictly
technical measures – such as implementing performance optimizations – but most
often what Richard Canning, one of the computer industry’s most influential industry
analysts, termed “responses to changes in the business environment.”9 This included
the introduction of new functionality, as dictated bymarket, organizational, or legisla-
tive developments. Software maintenance defined in terms of enhancement therefore
incorporated such apparently non-technical tasks as “understanding and document-
ing existing systems; extending existing functions; adding new functions; finding
and correcting bugs; answering questions for users and operations staff; training new
systems staff; rewriting, restructuring, converting and purging software; managing
the software of an operational system; and many other activities that go into running
a successful software system.”10

While the notion that software is but one element in a fluid and permeable
sociotechnical system might be familiar to us as historians of science and technology,
it was profoundly uncomfortable to software developers. The idea that software
technology had no fixed limits, no final end-state that could be unambiguously
defined as success — in other words, that the work of software development was
never done — was a real problem for project managers responsible for meeting

9Richard Canning. “The Maintenance ‘Iceberg”’. In: EDP Analyzer (Oct. 1972).
10E. Burton Swanson. “The dimensions of maintenance”. In: ICSE ’76: Proceedings of the 2nd

international conference on Software engineering. San Francisco, California, United States: IEEE
Computer Society Press, 1976, pp. 492–497.

5

deadlines, maintaining budgets, and satisfying requirements. In one of the earliest
published papers on the problem of software maintenance, the computer scientist
Meir Lehman described the situation thus:

Large scale, widely used programs such as operating systems are never
complete. They undergo a continuing evolutionary cycle of maintenance,
augmentation and restructuring to keep pace with evolving usage and
implementation technologies.11

By describing the “unending development of programs” in terms of the “the
evolutionary processes[es] that governs the life cycle of any complex system,” Lehman
and his co-author Francis Parr were attempting to eliminate what they saw as the
artificial distinction between development and maintenance. It was absurd to think
of software as a technology that could simply be designed, constructed, and then
be considered “finished.” Rather, the software system “interacts and interplays with
its environment in [a process of] mutual reinforcement” that only approaches, but
never reaches, some intended functionality. As users lean to exploit the capabilities
of the system, they “discover or invent new ways of using it,” which encourages
develops to modify of extend the system, which stimulates another round of user-
driven innovation or process change, which in turn generates the demand for new
features. In his later work, Lehman would define three types of software programs:
S-programs, P-programs, and E-programs. S and P programs were limited in scope
and precisely specified; E-programs were “real world” applications that were strongly
linked to their operational environment.12 In a series of eight “Lehman’s Laws,” he
defined the life-cycle of E-programs as a continuous process of change, growth (in
both size and complexity), and decay. Without an ongoing and rigorous strategy for
software maintenance, E-programs were destined to be disasters.

It is interesting to note the high degree of sophistication of sociological analysis
that can be found in the maintenance literature. Meir Lehman’s early and influential
description of software evolution, which not only defines software in terms strongly
reminiscent of a Hughesian sociotechnical system, but also describes a process of
technological co-construction that would not be out of place in the SCOT “school

11M M Lehman and F N Parr. “Program evolution and its impact on software engineering”. In:
ICSE ’76: Proceedings of the 2nd international conference on Software engineering. 1976.

12M M Lehman. “Programs, life cycles, and laws of software evolution”. In: Proceedings of the IEEE.
1980.

6

Figure 3: The First of Lehman’s Eight Laws of Software Maintenance

bus” book.13 In comparison with most of the authors who write about development in
this period, who are often more prescriptive than descriptive (a reflection, in part, of
their explicitly managerial agenda), the relatively small number of practitioners and
academics who focus on maintenance generally paint a more detailed and nuanced
portrait of the software lifecycle.

By the early 1980s, the industry and technical literature had settled on a shared
taxonomy for talking about software that identified three different dimensions of soft-
ware maintenance: corrective maintenance (largely focused on bug fixes), perfective
maintenance (which included performance improvements), and adaptive mainte-
nance (adaptions to the larger environment). Adaptive maintenance so dominated
real-world maintenance that many observers pushed for an entirely new nomencla-
ture: software maintenance was a misnomer, they argued: the process of adapting
software to change would better be described as “software support”, “software evolu-
tion”, or (my personal favorite) “continuation engineering.”14 Unfortunately, software
maintenance was the term that stuck.

In all of these new models for thinking about maintenance, the emphasis was
on systematic and sustainable solutions. If the work of maintenance began only
after the software system was released, it was already too late. “The main problem
in doing maintenance,” argued Norman Schneidewind in a 1987 survey of the state
of software maintenance, “is that we cannot do maintenance on a system which
was not designed for maintenance.”15 Maintainable software was software that could

13Wiebe Bijker, Thomas Hughes, and T. J Pinch, eds. The Social Construction of Technological
Systems. The MIT Press Cambridge MA, 1987.

14Girish Parikh. “What is software maintenance really?: what is in a name?” In: SIGSOFT Softw.
Eng. Notes 9.2 (1984), pp. 114–116.

15N F Schneidewind. “The State of Software Maintenance”. In: Software Engineering, IEEE Transac-
tions on (1987).

7

accommodate the inevitable evolution of the sociotechnical system. It should be
expected, not lamented. The best programmers should be assigned to maintenance,
and they should be granted access and influence in all of the stages of design and
development.

The Dull & Dirty Work of Maintenance

Like all forms of maintenance, software maintenance is difficult, unpopular, and
professionally unrewarding. To begin with, maintenance often required program-
mers to work on live systems, where mistakes and failures had real and immediate
consequences. Because in the context of software development maintenance was
rarely planned or budgeted for in advance, the work almost always performed under
high-stress, emergency conditions. In the early 1960s, for example, the development
of the IBM OS/360 operating system turned into an four-year long marathon that
absorbed more than 5,000 staff years of effort and cost the company more than half-
a-billion dollars — making it, at that point, the single largest expenditure in IBM
history. Much of the expense and delay associated with the project were incurred not
in the initial design and development of the software, but were the result of a series
of redesigns required by a constantly evolving socio-technical environment. In his
classic 1975 post-mortem analysis of the OS/360 debacle, TheMythical Man-Month,
project manager Frederick Brooks argued that the real costs of the failure were human
rather than financial, and were “best reckoned in terms of the toll it took on people:
the managers who struggled to make and keep commitments to top management
and to customers, and the programmers who worked long hours over a period of
years, against obstacles of every sort, to deliver working programs of unprecedented
complexity.”16 Many of the developers in the OS/360 groups would later leave the
company, victims of a variety of stresses ranging from technological to physical.17

Because maintenance does not involve design, it was (and is) generally considered
a routine and low-status activity.18 Most often the work is assigned to students, newly
hired employees, or poor-performing programmers.19 As one article on the “myths of

16Frederick P. Brooks. TheMythical Man-Month: Essays on Software Engineering. Addison-Wesley
New York, 1975.

17Emerson Pugh, Lyle Johnson, and John Palmer. IBM’s 360 and Early 370 Systems. MIT Press
Cambridge, MA, 1991.

18William E Perry. Managing systems maintenance. Prentice Hall, 1983.
19T M Pigoski. “Practical software maintenance: best practices for managing your software invest-

ment”. In: (1996); E B Swanson and C M Beath. “Maintaining information systems in organizations”.

8

maintenance,” described it, neither the activity nor those who performed it received
any respect:

• “Maintenance is all 3 A.M. fixes and frantic hysterics. It’s nothing we can
anticipate and it doesn’t take up that much time anyway”.

• “Any of my programmers can maintain any program”.
• “You don’t get anywhere doing maintenance”.
• “Maintenance is the place to dump your trainees, your burnouts and Joe, the

boss’ nephew, who thinks that hexadecimal is a trendy new disco. How can
they hurt anything there?”20

Since few organizations consider maintenance a strategic function most provide
software maintenance workers with little in terms of training, oversight, or rewards.21
Neither is maintenance taught in most universities.22 The result is a poorly trained
and unmotivated workforce, low levels of job satisfaction, and high levels of employee
turnover — a fact which, given the high-level of tacit knowledge involved in software
maintenance, only serves to further compound the situation.23

The Durability of the Digital

There are perhaps three important lessons to be learned from the history of software
maintenance. One has to do with what Gerardo Con Diaz has called the “contested
ontology” of software: that is to say, that debates about how software can be “broken”
(from a technical, organizational, or legal point of view) are in fact often maneuvers
in a larger conflict over the true nature of the thing itself. Is software art, science, or
technology? Each perspective implies something different about what can go wrong
with software, and how to fix it.

In: (1989), pp.
20B. Schwartz. “Eight Myths about Software Maintenance”. In: Datamation 28.9 (1982), pp. 125–128.
21Canfora and Cimitile, Software Maintenance.
22Donna M. Kaminski. “An analysis of advanced C.S. students’ experience with software mainte-

nance”. In: CSC ’88: Proceedings of the 1988 ACM sixteenth annual conference on Computer science.
Atlanta, Georgia, United States: ACM, 1988, pp. 546–550.

23Gary M Bronstein and Robert I Okamoto. “I’m OK, You’re OK, Maintenance is OK”. in: Com-
puterworld 15.2 (1981), pp. 20–24; Pankaj Bhatt, Gautam Shroff, and Arun K. Misra. “Dynamics of
software maintenance”. In: SIGSOFT Softw. Eng. Notes 29.5 (2004), pp. 1–5.

9

Another important lesson has to do with the supposed intangibility of software.
It is often claimed that software is an essentially literary technology: the way the
software works is determined, to a greater or lesser degree, by how its code is written.
In TheMythical Man-Month Frederick Brooks famously compared computer code
to poetry, arguing the “The programmer, like the poet, works only slightly removed
from pure-thought stuff. He builds his castles in the air, from air, creating by exertion
of the imagination.”24[57] Donald Knuth similarly argued that computer programs
were a form of literature, “fun to write, and … a pleasure for other people to read.”25
Both men were referring both to specific character of computer programming —
that is, that to code requires one to write — and to the larger creative and aesthetic
dimensions of the end product. Such literary metaphors were and are common
among software developers.26

Figure 4: Obligatory Dilbert Cartoon

But to argue that software can be written is also to suggest that it can also be
readily rewritten. As Brooks argued of his code-poetry, “Few media of creation are so
flexible, so easy to polish and rework, so readily capable of realizing grand conceptual
structures.”27 If this were true, then all software was contingent and transitional,
subject to constant renegotiation and redesign. Whereas conventional engineers
and architects had to plan carefully before committing their ideas to manufacture,

24Brooks, TheMythical Man-Month: Essays on Software Engineering .
25Donald Knuth. Literate Programming. Center for the Study of Language and Information Stanford,

CA, 1992; Donald E Knuth. “Computer programming as an art”. In: Communications of the ACM
(1974).

26Maurice Black. “The Art of Code”. PhD thesis. University of Pennsylvania, 2002; Wendy Hui
Kyong Chun. Programmed Visions. MIT Press, 2011, pp.

27Brooks, TheMythical Man-Month: Essays on Software Engineering , pp.

10

computer programmers faced no material constraints on their creativity. While this
allowed programmers an unprecedented degree of flexibility and autonomy (“build
first and draw up the specification afterwards,” was a frequent rallying cry in the
software industry), it also created unrealistic expectations on the part of the ultimate
end-users of their software applications. “The computer is the Proteus of machines,”
argued Seymour Papert, repeating a commonly held-perception, “Its essence is its
universality.”28 But the universality of the computer, made possible by its literary
nature of its software, meant that computer/software systemwas perpetually a work in
progress, with new features being requested, functionality demanded, and new bugs
introduced. Changing the software was as simple as (or even identical to) rewriting
the design specification — or so it seemed to many non-programmers.

But in working software systems, it is often impossible to isolate the literary
artifact from its material embodiment in a larger sociotechnical context. Despite the
fact that the material costs associated with building software are small in comparison
with traditional, physical systems, the degree to which software is embedded in larger,
heterogeneous networks makes starting from scratch almost impossible.

While it might be true that when a programmer is working alone, or beginning
work on an entirely new project, that he or she has almost complete creative control
over “the media of creation,” this would have been a rare occurrence — at least in the
corporate context. When charged with maintaining a “legacy” system (a category that
encompasses most active software projects), the programmer is working not with a
blank slate, but a palimpsest. Because software is a tangible record, not only of the
intentions of the original designer, but of the social, technological, and organization
context inwhich it was developed, it cannot be easilymodified. “Wenever have a clean
slate,” argued Barjne Stroudstroup, the creator of the widely used C++ programming
language, “Whatever new we do must make it possible for people to make a transition
from old tools and ideas to new.”29 In this sense, software is less like a poem and more
like a contract, a constitution, or a covenant. Software is history, organization, and
social relationships made tangible.

And finally, the history of softwaremaintenancemight provide a new perspectives
on the work of maintenance more generally. Because the distinction between design
and implementation is less concrete in software development than most forms of
technological construction (although, aswas previouslymentioned, not non-existent),

28S Papert. “Mindstorms: Children, computers, and powerful ideas”. In: (1980).
29Bjarne Stroustrup. “A History of C++”. In: History of Programming Languages. Ed. by T.M. Bergin

and R.G. Gibson. ACM Press, 1996.

11

the relationship between these two facets of invention in certain respects becomes
more clear.

For example, in the early 1990s the computer programmer Ward Cunningham in-
troduced the metaphor of “technical debt” to describe the trade-off between planning
and maintenance in software design and development. According to Ward,

“Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite… The
danger occurs when the debt is not repaid. Every minute spent on not-
quite-right code counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise.”30

Although the notion of technical debt was meant to highlight the importance
of not ignoring the need for ongoing maintenance (therefore offloading on to some
future developer), in software development as in high finance, the manipulation of
debt has itself now become a business strategy. Companies can now deliberately
accumulate “valuable” debt that can be traded, arbitraged, or off-loaded. Whether
this works any better in software than in sub-prime mortgages is an open question,
although the history of software suggests that the answer is negative…

30Ward Cunningham, “The WyCash Portfolio Management System,” OOPSLA ’92 Experience
Report. [http://c2.com/doc/oopsla92.html]

12

	Errors, Enhancements, and Evolution
	The Dull & Dirty Work of Maintenance
	The Durability of the Digital

